

Speed up
 the JSONB.
What we can do to improve performance.

VIRTUAL

Oleg Bartunov
Nikita Glukhov

Research scientist @
Moscow University
CEO Postgres Professional
Major PostgreSQL contributor

Since Postgres95

Senior developer @Postgres Professional
 PostgreSQL contributor

Major CORE contributions:
 Jsonb improvements
 SQL/JSON (Jsonpath)
 KNN SP-GiST
 Opclass parameters
Current development:
 SQL/JSON functions
 Jsonb performance

Nikita Glukhov

Quick Summary

• Jsonb is ubiquitous and is constantly developing
• JSON[B] Roadmap V2, Postgres Professional Webinar, Sep 17, 2020
• JSON[B] Roadmap V3, Postgres Build 2020, Dec 8, 2020

• There is a need to improve its performance:
• Investigate and optimise access to keys (metadata) for nontoasted and toasted

jsonb

• We demonstrate step-by-step performance improvements, which lead
to significant speedup (orders of magnitude)
• Repositories: Jsonb partial decompression, Jsonb partial detoast
• Slides of this talk (PDF, Video)

• Contact obartunov@postgrespro.ru, n.gluhov@postgrespro.ru for collaboration.

http://www.sai.msu.su/~megera/postgres/talks/json-webinar-2020.pdf
http://www.sai.msu.su/~megera/postgres/talks/json-build-2020.pdf
https://github.com/postgrespro/postgres/tree/jsonb_partial_decompression
https://github.com/postgrespro/postgres/tree/jsonb_partial_detoast
http://www.sai.msu.su/~megera/postgres/talks/jsonb-fosdem-2021.pdf
http://www.sai.msu.su/~megera/postgres/talks/json-webinar-2020.mp4
mailto:obartunov@postgrespro.ru

Motivational example (synthetic test)

• A table with 100 jsonbs of different sizes (100B - 10MB, compressed to 100B - 20KB):
CREATE TABLE test_toast AS SELECT
 i id,
 jsonb_build_object(
 'key1', i, 'key2', i::text,
 'key3', long_value,
 'key4', i, 'key5', i::text
) jb
FROM
 generate_series(1, 100) i,
 repeat('a', pow(10, 1 + 6.0 * i / 100.0)::int) long_value;

• Each jsonb looks like: key1,key2, loooong key3, key4,key5.

• We measure execution time of operator ->(jsonb, text) for each row by
repeating it 1000 times in the query:

SELECT jb -> 'keyN', jb -> 'keyN', … jb -> 'keyN' FROM test_toast WHERE id = ?;

Motivational example (synthetic test)

Key access time for TOASTed jsonbs linearly increase with jsonb size,
regardless of key size and position.

TOAST performance problems (synthetic test)

The test shows that key access time for TOASTed jsonbs is linearly increased
with jsonb size, regardless of key size.

Motivational example (IMDB test)

• Real-world JSON data extracted from IMDB database (imdb-22-04-2018-json.dump.gz)

• Typical IMDB «name» document looks like:
{
 "id": "Connors, Steve (V)",
 "roles": [
 {
 "role": "actor",
 "title": "Copperhead Creek (????)"
 },
 {
 "role": "actor",
 "title": "Ride the Wanted Trail (????)"+
 }
],
 "imdb_id": 1234567
 }

• There are many other rare fields, but only id, imdb_id are mandatory, and
roles array is the biggest and most frequent (see next slide).

http://www.sai.msu.su/~megera/postgres/files/imdb-22-04-2018-json.dump.gz

IMDB data set field statistics

Motivational example (IMDB test)

Motivation

• Decompression is the biggest problem. Big overhead of decompression
of the whole jsonb limits the applicability of jsonb as document storage
with partial access.
• Need partial decompression

• Toast introduces additional overhead - read too many block
• Read only needed blocks — partial detoast

TOAST process and its internal structure

• TOASTed value is pglz compressed

• Compressed value is split into fixed-size TOAST chunks (1996B for 8KB page)

• TOAST chunks are augment
with generated Oid chunk_id,
sequnce number chunk_seq
and written as tuples into
special TOAST relation
pg_toast.pg_toast_XXX, created
for each table containing
TOASTable attributes

• Attribute in the original heap
tuple is replaced with TOAST
pointer (18 bytes) containing
chunk_id, toast_relid,
raw_size, compressed_size

TOAST access

TOAST pointers does not refer to heap tuples with chunks directly. Instead they
contains Oid chunk_id and we need to descent by index (chunk_oid, chunk_seq).

So, to read only a few bytes
from the first chunk we
need to read 3, 4 or even 5
additional blocks.

Jsonb deTOAST improvements

• Partial pglz decompression

• Sort jsonb object key by their length

• Partial deTOASTing using TOAST iterators

• Inline TOAST

• Random access TOAST

• Partial compression (???)

Jsonb partial decompression

• Partial decompression eliminates overhead of pglz decompression of the whole jsonb.

• Jsonb is decompressed step by step: header, KV entries array, key name and key value.
 Only prefix of jsonb has to be decompressed to acccess a given key !

full decompression partial decompression

Jsonb partial decompression results (synthetic)

Access to key1 and key2 (at the beginning of jsonb) was significantly speed up:
• For inline compressed jsonb access time becomes constant

• For jsonb > 1MB acceleration is of order(s) of magnitude.

Jsonb partial decompression results (IMDB)

• Access to the first key «id» and rare key «height» was speed up.

• Access time to big key «roles» and short «imdb_id» placed at the end after «imdb_id» is
mostly unchanged

Sorting jsonb keys by length

In the original jsonb format object keys are sorted by (length,name), so the short keys with
longer or alphabetically greater names are placed at the end and cannot benefit from the
partial decompression. Sorting by length allows fast decompressions of the shortest keys
(metadata).

original: keys names and values sorted by key names new: keys values sorted by their length

Sorting jsonb keys by length results (synthetic)

Access to the all short keys (excluding long key3, placed now at the end of jsonb)
was significantly speed up:

Sorting jsonb keys by length results (IMDB)

• Access to the last short key «imdb_id» now also was speed up.

• There is big difference in access time (~5x) between inline and TOASTed values.

Partial deTOASTing

• We used patch «de-TOAST'ing using a iterator» from the CommitFest. It was originally
developed by Binguo Bao at GSOC 2019.

• This patch gives ability to deTOAST and decompress chunk by chunk. So if we need only the
jsonb header and first keys from the first chunk, only that first chunk will be read (really, some
index blocks also will be read).

• We modified patch adding ability do decompress only the needed prefix of TOAST chunks.

Partial deTOASTing results (synthetic)

Partial deTOASTing speeds up only access to short keys of long jsonbs, making access
time almost independent of jsonb size.

Partial deTOASTing results (IMDB)

• Results are the same, but not so noticeable because the are not many big (> 100KB) jsonbs.

• A big gap in access time (~5x) between inline and TOASTed values is still here.

Partial deTOASTing results (IMDB)

• This graph for blocks read by operator -> shows that after enabling partial deTOASTing during
access to short keys always read only 4 blocks (3 index and 1 heap block).

Iniline TOAST

• The idea is to store first TOAST chunk containing jsonb header and possibly some short keys
inline in the heap tuple.

• We added new typstorage «tapas»
that works similarly to «extended»,
except that it tries to fill the tuple
to 2KB (if other attrubutes occupy
less thabn 2KB) with the chunk cut
from the beggining of compressed
data.

Inline TOAST results (synthetic)

Partial inline TOAST completely removes gap in access time to short keys between
long and mid-size jsonbs.

Inline TOAST results (IMDB)

• Results are the same as in synthetic test.

• There is some access time gap between compressed and non-compressed jsonbs.

Inline TOAST results (IMDB)

This graph for blocks read by operator -> shows that after enabling inline TOAST during access to
short keys always read no additional blocks.

Step-by-step results (synthetic)

Step-by-step results (IMDB)

Conclusions

• A series of rather simple and straight-forward algorithms and storage
optimizations can greatly speed up access to short keys of jsonb.
The same technique can be applied to any data types with random access
to parts of data (arrays, hstore, movie, pdf …).

• A lot of further work is expected:
• Random access TOAST - to read only the required TOAST chunks to speed up

access to mid-size keys (e.g. if jsonb contains 100 fields of 1KB size)
• TOAST cache - to avoid duplication of deTOASTing, if the query contains two or

more jsonb operators and function on the the same jsonb attribute.
• DeTOAST deferring in the chain of accessors (js→'roles'→5), not needed
for jsonpath.

Non-scientific comparison PG vs Mongo (4.09)

• Seqscan, everything in memory (shared buffers 16 GB, Mongo — 22 GB)

• How many 6-inch tall people are in IMDB database ? (11980)

Non-scientific comparison PG vs Mongo (4.09)

• Seqscan, non-cached (shared buffers 100 MB, Mongo - 100 MB)

• How many 6-inch tall people are in IMDB database ? (11980)

More details and results will be available at PGConf.Online 2021 (March
1-3)
https://www.postgresql.org/about/event/pgconfonline-2021-2401/

 You are welcome with your questions !

https://www.postgresql.org/about/event/pgconfonline-2021-2401/

Random access TOAST (future)

• Random access TOAST allows to skip reading and decompressing of unneeded TOAST chunks.

• Each chunk should be compressed separately.

• The mapping of jsonb offsets to
chunk numbers can be implemented
with the additional field
chunk_offset
and the index on
(chunk_id, chunk_offset).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

